## Note

# On the Maximum Principle of Bernstein Polynomials on a Simplex 

Thomas Sauer<br>Mathematical Institute, University of Erlangen-Nuremberg, Bismarckstrasse 12, 8520 Erlangen, Germany<br>Communicated by A. Pinkus

Received June 7, 1991; revised July 25, 1991

In a recent paper [1] Chang and Zhang gave a proof of what they called a converse theorem of convexity. Their bivariate result was extended to a multivariate (and tensor product) setting by Dahmen and Micchelli [2] using semigroup techniques. In fact, the latter proved among other things:

Theorem. Suppose $f$ is a continuous function on $S_{m}$ such that for the Bernstein polynomials $B_{n} f$ the following holds:

$$
B_{n} f(u) \geqslant f(u), \quad u \in S_{m}, n \in \mathbb{N} .
$$

Then $f$ achieves its maximum on $\partial S_{m}$, the boundary of $S_{m}$.
To make the theorem understandable let me briefly recall the definitions. Since a point of any $m$-dimensional simplex can be identified with its barycentric coordinates we can always consider the simplex to be the "barycentric unit simplex" $S_{m}=\left\{u=\left(u_{0}, \ldots, u_{m}\right): u_{k} \geqslant 0, \sum_{k=0}^{m} u_{k}=1\right\}$. The Bernstein-Bézier basis polynomials $B_{i}^{n}: S_{m} \rightarrow \mathbb{R}$ are then defined via

$$
B_{i}^{n}(u)=\frac{n!}{i!} u^{i}=\frac{n!}{i_{0}!\cdots i_{m}!} u_{0}^{i_{0}} \cdots u_{m}^{i_{m}}
$$

where $i=\left(i_{0}, \ldots, i_{m}\right)$ is a multiindex with $|i|=\sum_{k=0}^{m} i_{k}=n$. For any $f \in C\left(S_{m}\right)$, the $n$th Bernstein polynomial $B_{n} f$ is given by

$$
B_{n} f(u)=\sum_{|i|=n} f\left(\frac{i}{n}\right) B_{i}^{n}(u) .
$$

I want to give a short and elementary proof of the theorem stated above; in fact, it is an immediate consequence of

Lemma. Suppose $f \in C\left(S_{m}\right)$ is such that $B_{n} f \geqslant f$ for all $n \in \mathbb{N}$. If $f$ achieves its maximum inside $S_{m}$, then $f$ is constant.

Proof. Suppose $f$ achieves its maximum at some $u^{0}$ inside $S_{m}$. This means that $u_{k}^{0}>0, k=0, \ldots, m$, and hence $B_{i}^{n}\left(u^{0}\right)>0,|i|=n$. Since $\sum_{|i|=n} B_{i}^{n}(u) \equiv 1$ we have, due to the assumptions,

$$
B_{n} f\left(u^{0}\right) \geqslant f\left(u^{0}\right)=f\left(u^{0}\right) \sum_{|i|=n} B_{i}^{n}\left(u^{0}\right) \geqslant \sum_{|i|=n} f\left(\frac{i}{n}\right) B_{i}^{n}\left(u^{0}\right)=B_{n} f\left(u^{0}\right)
$$

with equality if and only if $f\left(u^{0}\right)=f(i / n),|i|=n, n \in \mathbb{N}$. Since $f$ is continuous, it indeed must be a constant.

Let us recall that the restriction of $B_{n} f$ to an ( $m-1$ )-dimensional face of $S_{m}$ is the same as the ( $m-1$ )-variate Bernstein polynomial of the restriction of $f$ to this face. An application of a lower-dimensional version of the theorem shows that the maximum has to be located on the boundary of the face. By iteration we finally obtain

Corollary. Suppose $f \in C\left(S_{m}\right)$ such that $B_{n} f \geqslant f$. Then $f$ achieves its maximum at one of the vertices of $S_{m}$.

## References

1. G. Chang and J. Zhang, Converse theorems of convexity for Bernstein polynomials over triangles, J. Approx. Theory 61 (1990), 265-278.
2. W. Dahmen and C. A. Micchelle, Convexity and Bernstein polynomials on $k$-simploids, Acta Math. Appl. Sinica 6 (1990), 50-66.
